If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-18w+69=0
a = 1; b = -18; c = +69;
Δ = b2-4ac
Δ = -182-4·1·69
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{3}}{2*1}=\frac{18-4\sqrt{3}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{3}}{2*1}=\frac{18+4\sqrt{3}}{2} $
| 5(2x+3)=3(3x+8)= | | 4+41+5r=104 | | 2/3+3/4c=7/12 | | n-8=5(n=9) | | 2y-7=45 | | 2m+7=3. | | 78-16k-16=49+6k+9 | | 5x+3=−3+2x | | x-(x/20)=1000 | | x/80=1000 | | 7(t+9)=(-49) | | 4x×5=45 | | -6+24-2=5a+4-4a+20 | | s+2=(-3) | | 2n+4n+2(9+n)=48 | | 4^2u=8 | | w+32/7=9 | | 4^{2u}=8 | | 1,1=56-9c | | a/5a=2a/ | | 3x+6=8x+21 | | 0.7x0.4=0.28 | | 3(3x+5)=6x+21 | | 2. 5x–11=24 | | 6x^2+25=79 | | (2x+3)/(4x-7)=0 | | 3(r+1.6)-8r=94 | | 3a{a=4 | | 3(m-2)=(-9) | | |2x+8|-|5-x|=x | | 8a+3=a-19 | | 5(a+10)=-35 |